Math 432: Set Theory and Topology Homework 1 Due date: Jan 26 (Thu)

Exercises from Kaplansky's book.

Sec 1.1: 8

Sec 1.2: 8

Sec 1.4: 7 (Hint: It is enough to prove that f is invertible, i.e. define an inverse.)

Other (mandatory) exercises.

1. Deduce the identity $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$ from the distributivity law in the following two ways: using complements and not using complements (directly applying distributivity).
2. Recall that $A \triangle B:=(A-B) \cup(B-A)$ and prove the following (using any method you like).
(a) $A \triangle B=(A \cup B)-(A \cap B)$.
(b) $A \triangle C \subseteq(A \triangle B) \cup(B \triangle C)$.
3. Terminology. For a function $f: A \rightarrow B$ and $A_{0} \subseteq A$, let $f\left\lfloor_{A_{0}}\right.$ denote its restriction to A_{0}, namely, the function $\left.f\right|_{A_{0}}: A_{0} \rightarrow B$ defined by $f{L_{A_{0}}}(a):=f(a)$ for each $a \in A_{0}$. When we say " f on A_{0} has some property", we mean that $\left.f\right|_{A_{0}}$ has that property.
Let $f: A \rightarrow B$ and $g: B \rightarrow C$.
(a) Prove that $g \circ f$ is injective if and only if f is injective and g is injective on $f(A)$ (i.e. $\left.g\right|_{f(A)}$ is injective).
(b) Give an example of f and g such that f is injective yet $g \circ f$ is not.
(c) Prove that $g \circ f$ is surjective if and only g is surjective on $f(A)$ (i.e. $g(f(A))=C$).
(d) Give an example of f and g such that g is surjective yet $g \circ f$ is not.
4. Let $f: A \rightarrow B$ and $A_{0}, A_{1} \subseteq A, B_{0}, B_{1} \subseteq B$.
(a) Prove that f^{-1} respects unions, i.e. $f^{-1}\left(B_{0} \cup B_{1}\right)=f^{-1}\left(B_{0}\right) \cup f^{-1}\left(B_{1}\right)$.
(b) Prove that f^{-1} respects complements, i.e. $f^{-1}\left(B_{0}^{\prime}\right)=f^{-1}\left(B_{0}\right)^{\prime}$.
(c) Prove that f respects unions, i.e. $f\left(A_{0} \cup A_{1}\right)=f\left(A_{0}\right) \cup f\left(A_{1}\right)$.
(d) Show that $f\left(A_{0}^{\prime}\right) \subseteq f\left(A_{0}\right)^{\prime}$ and $f\left(A_{0}^{\prime}\right) \supseteq f\left(A_{0}\right)^{\prime}$ don't hold in general by constructing a counterexample to each.
