Math 432: Set Theory and Topology

```
Homework 1
```

Due date: Jan 26 (Thu)

Exercises from Kaplansky's book.

Sec 1.1: 8

Sec 1.2: 8

Sec 1.4: 7 (HINT: It is enough to prove that f is invertible, i.e. define an inverse.)

Other (mandatory) exercises.

- 1. Deduce the identity $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ from the distributivity law in the following two ways: using complements and not using complements (directly applying distributivity).
- 2. Recall that $A \bigtriangleup B := (A B) \cup (B A)$ and prove the following (using any method you like).
 - (a) $A \bigtriangleup B = (A \cup B) (A \cap B).$
 - (b) $A \bigtriangleup C \subseteq (A \bigtriangleup B) \cup (B \bigtriangleup C)$.
- **3. Terminology.** For a function $f : A \to B$ and $A_0 \subseteq A$, let $f|_{A_0}$ denote its *restriction* to A_0 , namely, the function $f|_{A_0} : A_0 \to B$ defined by $f|_{A_0}(a) := f(a)$ for each $a \in A_0$. When we say "f on A_0 has some property", we mean that $f|_{A_0}$ has that property.

Let $f: A \to B$ and $g: B \to C$.

- (a) Prove that $g \circ f$ is injective if and only if f is injective and g is injective on f(A) (i.e. $g|_{f(A)}$ is injective).
- (b) Give an example of f and g such that f is injective yet $g \circ f$ is not.
- (c) Prove that $g \circ f$ is surjective if and only g is surjective on f(A) (i.e. g(f(A)) = C).
- (d) Give an example of f and g such that g is surjective yet $g \circ f$ is not.
- **4.** Let $f : A \to B$ and $A_0, A_1 \subseteq A, B_0, B_1 \subseteq B$.
 - (a) Prove that f^{-1} respects unions, i.e. $f^{-1}(B_0 \cup B_1) = f^{-1}(B_0) \cup f^{-1}(B_1)$.
 - (b) Prove that f^{-1} respects complements, i.e. $f^{-1}(B'_0) = f^{-1}(B_0)'$.
 - (c) Prove that f respects unions, i.e. $f(A_0 \cup A_1) = f(A_0) \cup f(A_1)$.
 - (d) Show that $f(A'_0) \subseteq f(A_0)'$ and $f(A'_0) \supseteq f(A_0)'$ don't hold in general by constructing a counterexample to each.